



# IX-350R2UPA9

# **Redundant Power Supply**

(2U-350W+350W)

# SPECIFICATION

Revision: 1.0

3500 E. Francis St. Ontario, CA 91761, USA. https://www.istarusa.com/en/xeal/ TEL: 626-3038885 FAX: 626-3010588

## **1.0 SCOPE**

The specification defines the key characteristics for the power supply. The power supply can be used for Server storage filed, and normal AC or HVDC input voltage can apply in the power supply. Output ports is include +12V, +5V, +3.3V, -12V and +5VSB. The power supply has fans for aircooling. The max output power is 350W. The redundant module is U1A-D10350-DRB-H.

## 2.0 INPUT PARAMETER

#### 2.1 Input Voltage/Input Current/Frequency

The power supply should operate in input limited voltage range, and follow the specification defined as below table, includes the limited value of input current, input voltage, working frequency. The power supply should be turned on when 90VAC or 160VDC at min load and max load.

|                    | Min                                                                                 | Rated              | Max | Units |  |
|--------------------|-------------------------------------------------------------------------------------|--------------------|-----|-------|--|
| AC input voltage   | 90                                                                                  | 100-240            | 264 | Vrms  |  |
| Frequency          | 47                                                                                  | 50-60              | 63  | Hz    |  |
| HVDC input voltage |                                                                                     | 160-240 or 160-340 |     |       |  |
| Input current      | <6A@100-240VAC @full load<br><6A@160-240VDC @full load<br><6A@160-340VDC @full load |                    |     |       |  |

Table1.

Note: 265Vac-300Vac input for any length time shall not cause damage to the power supply.

#### 2.2 Inrush Current

40A max at any phase of 230Vac input when 25degC cold start, ignore the instantaneous charge current for X,Y caps, but the peak current derating time should < 200us.

#### 2.3 Efficiency

Efficiency testing should be in ambient temperature: 18degC-27degC, input voltage at 230Vac/50Hz. Below table provides efficiency requirement at various load for only one module.

| Load | +3.3V   | +5V     | +12V    | -12V   | +5Vsb  | EFF  |
|------|---------|---------|---------|--------|--------|------|
| 20%  | 2.979A  | 2.979A  | 3.455A  | 0.119A | 0.477A | ≧85% |
| 50%  | 7.447A  | 7.447A  | 8.638A  | 0.298A | 1.191A | ≧88% |
| 100% | 14.894A | 14.894A | 17.277A | 0.596A | 2.383A | ≧87% |

Table2.

## 2.4 Power Factor

The power supply must meet the power factor requirements stated in the Energy Star Program Requirements for Computer Servers. These requirements are stated as below when one module. Test at 230Vac/50Hz.

Table3.

| Load | 20% Load | 50% Load | 100% Load |
|------|----------|----------|-----------|
| PF   | > 0.88   | > 0.95   | > 0.99    |

#### 2.5 Surge and Sag

AC line transient conditions are defined as "sag" and "surge". "Sag" is defined as the AC line voltage drops below nominal voltage; "Surge" is defined as the AC line voltage rises above nominal voltage. The power supply should meet below AC line sag and surge conditions.

#### Table4. Sag

| Duration      | Sag  | Input Voltage | Frequency | Performance Criteria                                                      |
|---------------|------|---------------|-----------|---------------------------------------------------------------------------|
| 0.5 AC cycle  | 95%  | 100~240Vac    | 50/60Hz   | No loss of function or performance                                        |
| >1.0 AC cycle | >30% | 100~240Vac    | 50/60Hz   | Loss of function acceptable,<br>power supply can turn on<br>automatically |

#### Table5. Surge

| Duration             | Surge | Input Voltage | Frequency | Performance Criteria               |
|----------------------|-------|---------------|-----------|------------------------------------|
| Continuous           | 10%   | 100~240Vac    | 50/60Hz   | No loss of function or performance |
| 0 to 0.5 AC<br>cycle | 30%   | 115~230Vac    | 50/60Hz   | No loss of function or performance |

## **3.0 OUTPUT PARAMETER**

## 3.1 Output Current

The following table defines the current rating. The combined output power of all outputs shall not exceed the rated output power. The power supply shall meet both static, dynamic voltage regulation and timing requirements for the min/ max loading conditions.

| Output Voltage | Min Current | Max current |
|----------------|-------------|-------------|
| +3.3V          | 0A          | 25A         |
| +5V            | 0A          | 25A         |
| +12V           | 1A          | 29A         |
| -12V           | 0A          | 1A          |
| +5Vsb          | 0A          | 4A          |

Table6.

Note: The continuous total max output power is 350W for 90-264Vac input.

#### **3.2 Voltage Regulation**

The power supply output voltage must stay within the following voltage limits shown in below table when operating at steady state, dynamic loading conditions. All outputs are measured with reference to the return remote sense (ReturnS) signal

| Output Voltage | Min    | Rated | Max    | Tolerance |
|----------------|--------|-------|--------|-----------|
| +3.3V          | 3.135V | 3.3V  | 3.465V | +/-5%     |
| +5V            | 4.75V  | 5.0V  | 5.25V  | +/-5%     |
| +12V           | 11.4V  | 12.0V | 12.6V  | +/-5%     |
| -12V           | 10.8V  | 12.0V | 13.2V  | +/-10%    |
| +5Vsb          | 4.75V  | 5.0V  | 5.25V  | +/-5%     |

Table7.

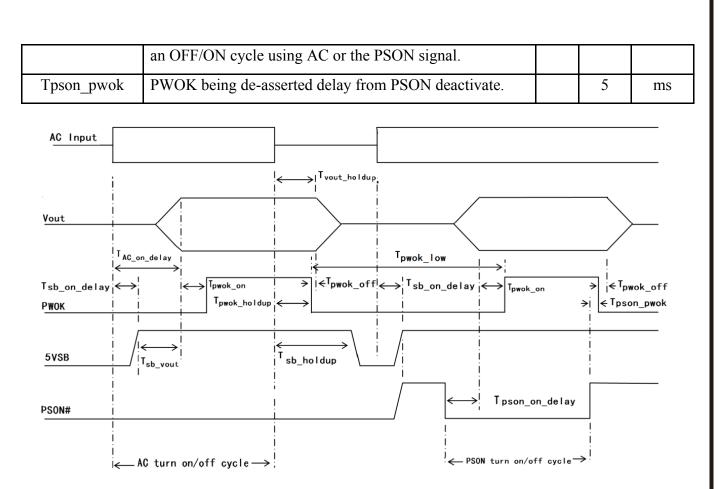
## 3.3 Ripple & Noise

Table8.

| Output voltage | Ripple & noise |
|----------------|----------------|
| +3.3V          | <50mV          |
| +5V            | <50mV          |
| +12V           | <120mV         |

| -12V  | <120mV |
|-------|--------|
| +5Vsb | <50mV  |

Note:


1. This is measured over a bandwidth of 20MHz at the output connector. A  $10\mu$ F Electrolytic capacitor in parallel with a  $0.1\mu$ F ceramic capacitor are placed at the point of measurement.

## 3.4 Timing

Below figure & table shows the power supply timing & requirements.

| Item           | Description                                                                                       | Min | Max  | Units |
|----------------|---------------------------------------------------------------------------------------------------|-----|------|-------|
| Tvout _rise    | Output voltage rise from 10% to 90% time for 5Vsb.                                                |     | 25   | ms    |
| Tvout _rise    | Output voltage rise from 10% to 90% time for 12V, 3.3V, 5V, -12V.                                 |     | 70   | ms    |
| Tsb_on_delay   | Delay from AC being applied to 5Vsb being within regulation.                                      |     | 1500 | ms    |
| Tac_on_delay   | Delay from AC being applied to 12V, 3.3V, 5V, -12V being within regulation.                       |     | 3000 | ms    |
| Tsb_vout       | Delay from 5Vsb being in regulation to 12V, 3.3V, 5V, -<br>12V being in regulation at AC turn on. | 50  | 1500 | ms    |
| Tpson_on_delay | Delay from PSON active to output voltages being within regulation limits.                         | 5   | 400  | ms    |
| Tpwok_on       | Delay from output voltages within regulation limits to<br>PWOK asserted at turn on.               | 100 | 500  | ms    |
| Tvout_holdup   | Time 12V, 3.3V, 5V, -12V output stay within regulation after AC loss.                             | 11  |      | ms    |
| Tpwok_holdup   | Delay from loss of AC to de-assertion of PWOK.                                                    | 10  |      | ms    |
| T5Vsb_hold up  | Time the 5Vsb output voltage stays within regulation after loss of AC.                            | 70  |      | ms    |
| Tpwok_off      | Delay from PWOK de-asserted to output voltages dropping out of regulation limits.                 | 1   |      | ms    |
| Tpwok_low      | Duration of PWOK being in the de-asserted state during                                            | 100 |      | ms    |

#### Table9. Turn On/Off Timing



#### **3.5 Dynamic**

The load transient repetition rate shall be tested between 50Hz to 5KHz at 50% duty cycles. The test shall be at least in 50 Hz/1KHz/5KHz condition. The load transient repetition rate is only a test specification.

The output voltage shall remain within limits specified for the step loading, slew rate, and capacitive loading in below table.

|                | Transient Step (A) | • /  |                |          |
|----------------|--------------------|------|----------------|----------|
| Output Voltage | Percent of Rated   | A/us | Frequency (Hz) | Cap (uF) |
|                | current            |      |                |          |
| +3.3V          | 30%                | 0.25 | 50-5K          | 2200     |
| +5V            | 30%                | 0.25 | 50-5K          | 2200     |
| +12V           | 60%                | 0.5  | 50-5K          | 2200     |
| -12V           | 0.5A               | 0.25 | 50-5K          | 100      |
| +5Vsb          | 1A                 | 0.25 | 50-5K          | 20       |

Table10.

## **3.6 Capacitive Loading**

The power supply shall be stable and can start up at no load with below capacitive loading.

| Output Voltage          | +3.3V | +5V  | +12V  | -12V | +5Vsb |
|-------------------------|-------|------|-------|------|-------|
| Capacitive loading (uF) | 5000  | 5000 | 15000 | 350  | 350   |

Table11.

#### 3.7 LED Status

There are indicators of LED in power supply module next to the inlet socket. This LED shall have several kind of status as below.

| Table12. |
|----------|
|----------|

| Power Supply Status                                                                                    | LED Status      |
|--------------------------------------------------------------------------------------------------------|-----------------|
| Output ON and OK.                                                                                      | Green           |
| No AC power to all power supplies.                                                                     | OFF             |
| AC present/Only 5Vsb on (PS off) or PS in cold redundant state.                                        | 1Hz Blink Green |
| AC cord unplugged or AC power lost; with a second power supply in parallels still with AC input power. | Amber           |
| Power supply warning events where the power supply continuous to operate: High temperature , Fan Fail. | 1Hz Blink Amber |
| Power supply critical event causing a shutdown: UVP, OVP, OCP, OTP,<br>Fan Fail.                       | Amber           |
| Power supply Firmware updating.                                                                        | 2Hz Blink Green |

Note:

1. The power supply's LED is on the case's front panel.

## **3.8 Control Signal**

## **3.8.1** Control and Status Signals

All control signals shall be TTL compatible with respect to the output return and shall be isolated from the primary circuit and be SELV (safety extra-low voltage circuit) rated.

#### 3.8.2 PSON Input Signal

The PSON signal is required to remotely turn on/off the power supply. PSON is an active low signal that turn on the +12V power rail. When this signal is not pulled low by the system, or left open, the outputs (except the +5Vsb) turn off. This signal is pulled to a standby voltage by a pull-up resistor internal to the power supply. Refer to section 3.4 for the timing diagram. This signal accepts an open collector/drain input from the system and a 20K ohm resistor pull up to +3.3Vs located in power supply.

| Signal Type       | Power State | Logic Level (Min) | Logic Level (Max) |
|-------------------|-------------|-------------------|-------------------|
| PSON=Low          | ON          | 0V                | 1.0V              |
| PSON=High or Open | OFF         | 2.0V              | 3.46V             |

| Table13 | . PSON | Signal | Characteristic |
|---------|--------|--------|----------------|
|---------|--------|--------|----------------|

#### 3.8.3 PWOK (Power OK) Output Signal

PWOK is a power OK signal and will be pulled high when the power supply to indicate that all the outputs are within the regulation limits of the power supply. When any output voltage falls below regulation limits or when AC power has been removed for a time sufficiently long so that power supply operation is no longer guaranteed, PWOK will be de-asserted to a low state. The start of the PWOK delay time shall inhibited as long as any power supply output is in current limit. This signal is open collector/drain output and a 0.36K resistor pull-up to +5V located in module.

| Signal Type | Power State  | Logic Level (Min) | Logic Level (Max) |
|-------------|--------------|-------------------|-------------------|
| PWOK=Low    | Power Not OK | 0V                | 0.4V              |
| PWOK=High   | Power OK     | 2.4V              | 5.25V             |

Table14. PWOK Signal Characteristic

#### **4.0 PROTECTION**

When the 3.3V, 5V, -12V output's OCP/OVP or 12V output's OVP is triggered, the power supply will shut down and latched off. The latch can be cleared by toggling the PSON signal or by an AC power interruption. When the input UVP/OVP, OTP or 12V output's OCP,5Vsb output's OCP/OVP is triggered, the power supply will shut down and auto recovery when the fault condition removed.

#### 4.6 Over Current Protection (OCP)

The power supply should have over current protection to prevent the outputs from exceeding limits. If the +12V, +5Vsb output's OCP triggered, the power supply should shut down and self-recovery after the over current condition removed. If the +3.3V, +5V, -12V output's OCP triggered, the power supply will shut down and latched off. The latch state can be cleared by toggling the PSON signal or by an AC power interruption of 5 seconds nominal. The test should under 1+0 state.

3.3V & 5V: 26~38A,

5Vsb: 4.4~8A,

-12V: 1.1~2.0A,

12V: 35~40A.

#### **5.0 OPERATE ENVIRONMENT**

#### 5.1 Operate Temperature

Operate temperature:  $0^{\circ}$ C to  $+50^{\circ}$ C.

#### **5.2 Storage Temperature**

Storage temperature:  $-40^{\circ}$ C to  $+70^{\circ}$ C.

#### 5.3 Operate Humidity

Operate Humidity (non-condensing): 10% to 90%.

#### 5.4 Storage Humidity

Storage Humidity (non-condensing): 5% to 95%.

#### 5.5 Operate Altitude

Operate Altitude: 0 to 5000m.

#### 5.6 Storage Altitude

Storage Altitude: 0 to 6000m.

#### 6.0 SAFETY

#### 6.1 Safety Certification

CE, FCC, CCC,

#### 6.2 Hi-pot

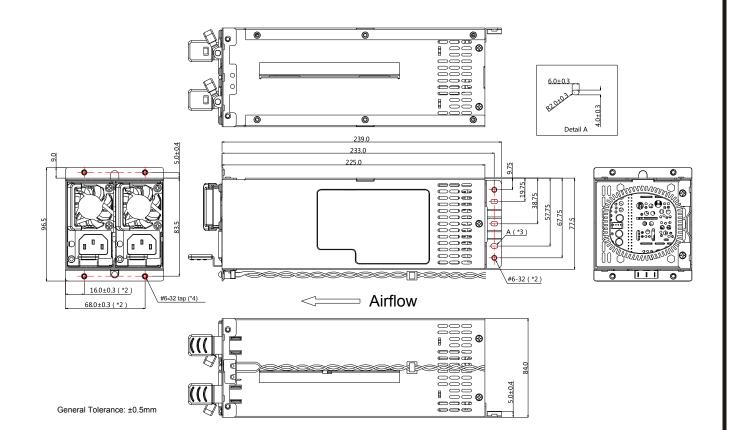
Primary to secondary, Hi-pot Withstand voltage: 10mA max 3000Vac, 50/60Hz or 5mA max 4242Vdc for 60 seconds when PCBA;

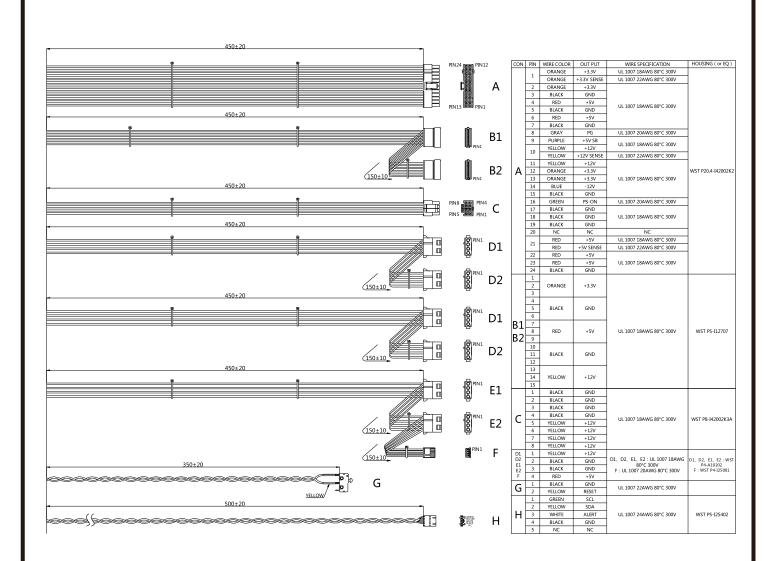
Primary to Earth, Hi-pot Withstand voltage: 10mA max 1800Vac, 50/60Hz or 5mA max 2545Vdc for 60 seconds.

#### 6.3 Grounding Impedance Test

Grounding impedance test using grounding current 40A for 60S and the impedance is less than 100mohm.

#### 6.4 Leakage Current


Leakage current refers to the voltage applied to the no fault, between the metal parts with electrical insulated from each other, or between charged parts and grounding parts, the current formed through the medium around the insulated surface called leakage current. Leakage current is the current flowing through the insulation part under the action of the electrical line or equipment in the absence of failure and voltage. Therefore, it is one of the important symbols to measure the insulation quality of electrical appliances, and is the main quota of product safety performance. The leakage current is limited to a very small value, which plays an important role in improving product safety performance.


In order to ensure that the leakage current of the power supply case not cause leakage damage to the human body, after inserting the AC power, the leakage current of the power supply should meet the requirements of safety. Under 240Vac/60Hz conditions to be less than 3.5mA.

#### **6.5 Insulation Resistance**

Primary to Secondary: 500Vdc for 60S, the insulation resistance shall not be less than  $100M\Omega$ .

## 7.0 OUTLINE STRUCTURE





#### 8.0 ROHS

Power supply must meet be Rohs6 compliant including the component, PCB, soldering material, case, wire, and so on.

## 9.0 EMI AND EMS REQUIREMENT

#### Table15. EMI (Electromagnetic Interference) Requirements Table

| Description and Requirement             | Criterion                                                                                                                                                                                                                          | Notes                                                                                                                                                                                                                                                                                                 |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Frequency: 30MHz~1GHz                   | EN 55032                                                                                                                                                                                                                           | 230V/50Hz input                                                                                                                                                                                                                                                                                       |
| Class A                                 | FCC Part 15                                                                                                                                                                                                                        | 120V/60Hz input                                                                                                                                                                                                                                                                                       |
| Frequency: 150KHz~30MHz                 | EN 55032                                                                                                                                                                                                                           | 230V/50Hz input                                                                                                                                                                                                                                                                                       |
| Class A                                 | FCC Part 15                                                                                                                                                                                                                        | 120V/60Hz input                                                                                                                                                                                                                                                                                       |
| EN 61000-3-2 Class D                    | EN 61000-3-2                                                                                                                                                                                                                       | 230V/50Hz input                                                                                                                                                                                                                                                                                       |
| $Pst \le 1.0 \text{ and } Plt \le 0.65$ |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                       |
| Voltage change $\leq 3.3\%$             |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                       |
| Relative Voltage change $\leq 4\%$      | EN 61000-3-3                                                                                                                                                                                                                       | 230V/50Hz input                                                                                                                                                                                                                                                                                       |
| The voltage changed over 3.3%           |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                       |
| duration time should $\leq$ 500mS       |                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                       |
|                                         | IIFrequency: $30MHz \sim 1GHz$ Class AFrequency: $150KHz \sim 30MHz$ Class AEN 61000-3-2 Class DPst $\leq 1.0$ and Plt $\leq 0.65$ Voltage change $\leq 3.3\%$ Relative Voltage change $\leq 4\%$ The voltage changed over $3.3\%$ | Frequency: $30MHz\sim1GHz$ EN $55032$ Class AFCC Part 15Frequency: $150KHz\sim30MHz$ EN $55032$ Class AFCC Part 15EN $61000-3-2$ Class DEN $61000-3-2$ Pst $\leq 1.0$ and Plt $\leq 0.65$ EN $61000-3-2$ Voltage change $\leq 3.3\%$ EN $61000-3-3$ Relative Voltage change $\leq 4\%$ EN $61000-3-3$ |

 Table16. EMS (Electromagnetic Susceptibility) Requirements Table

| Item                                     | Description and Requirement                          | Level | Criterion                               |
|------------------------------------------|------------------------------------------------------|-------|-----------------------------------------|
| Surge                                    | Different Mode: ±1KV 20hm<br>Common Mode: ±2KV 120hm | В     | EN61000-4-5<br>EN 55035<br>GR-1089-CORE |
| Electrical Fast Transient<br>Group (EFT) | ±2KV                                                 | В     | EN61000-4-4<br>EN 55035<br>YD/T 1082    |
| Electrical Static Discharge (ESD)        | Touch: ±6KV<br>Air: ±8KV                             | В     | EN61000-4-2<br>EN 55035                 |
| Radiated Susceptibility (RS)             | 80M~2.7GHz 3V/m 80% AM                               | А     | EN 61000-4-3<br>EN 55035                |
| Conducted Susceptibility<br>(CS)         | 150KHz~80MHz 3V/m<br>80% AM                          | А     | EN 61000-4-6<br>EN 55035                |

| Voltage Dips and<br>Interruptions | 0% Ut: 10ms<br>70% Ut: 500ms<br>0% Ut: 5000ms | B<br>B<br>C | EN 61000-4-11<br>EN 61000-4-29<br>EN 55024<br>GB 19286<br>EN 60601 |
|-----------------------------------|-----------------------------------------------|-------------|--------------------------------------------------------------------|
|                                   |                                               |             | EN 60601                                                           |

Performance criterion of the voltage fluctuation immunity test:

A: The power supply should have no loss of function or degradation of performance according to its specification during the test.

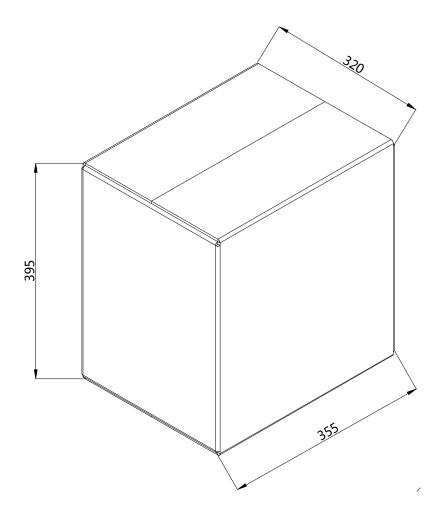
B: Temporary loss of function or degradation of performance is acceptable, but all the outputs should be in an acceptable range and should recover to normal after the test. The power supply shouldn't loss any of outputs, reset or any abnormal warning when doing the test with system.

C: Temporary loss of function or shut down is acceptable, but the power supply should restart with an operator intervention or auto-restart normally after the test.

#### **10.0 MECHANICAL PERFORMANCE**

Non-operating:

Sine sweep: 5~500Hz @0.5gRMS at 0.5 octave/min; dwell 15 min at each of 3 resonant points; Random profile: 5Hz @0.01g^2/Hz (slope up); 20~500Hz @0.02g^2/Hz (flat); Input acceleration = 3.13gRMS; 10min.per axis for 3 axis on all samples.


#### **11.0 MTBF**

Quantitative reliability (Quantitative) performance requirements: MTBF (MTBF Mean Time Between Critical Failure), according to the Bellcore standard SR-332 Issue3, the PSU operates continuously under 25degC condition, 115VAC/60Hz 230V/50HZ, and 240VDC input voltage under 100% load, and MTBF is more than 100000 hours, the testing process should not be interrupted.

| Table17.                   |                                                                                               |                                                                                   |  |  |
|----------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|--|
| Item                       | Requirement                                                                                   | Notes                                                                             |  |  |
| E-CAP Life Time            | $\geq$ 5 years at 25°C ambient                                                                | Should $\geq 3$ years at 25 °C ambient when<br>mating with the system of customer |  |  |
| CMTBF<br>(Calculated MTBF) | ≥ 250,000 hours, at 25 °C<br>(≥ 100,000 hours, at 40 °C) ambient<br>temperature and full load | By Telcordia SR-332 issue 2                                                       |  |  |

## **12.0 PACKAGE**

## 12.1 Outline Diagram of Carton



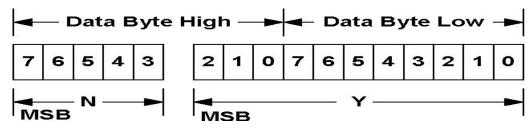
Note:

Material: K=K, five layers of corrugated paper

## **13.0 SOFTWARE**

## **13.1 Data Precision Requirement**

Some data read from power supply should have a precision requirement as below table:


| Input Voltage           | Output load condition                        | <10%                  | 10%-20% | >20% |
|-------------------------|----------------------------------------------|-----------------------|---------|------|
|                         | Read_VIN(88h)                                |                       | ±5%     | ±5%  |
|                         | Read_IIN(89h)                                |                       | ±5%     | ±5%  |
| 110Vac/220Vac/240Vdc    | Read_PIN(97h)                                | Read_PIN(97h) No Spec |         | ±5%  |
|                         | Read_Vout(8Bh)                               |                       | ±5%     | ±5%  |
| 110 vac/220 vac/210 vac | Read_Iout(8Ch)                               |                       | ±5%     | ±5%  |
|                         | Read_Pout(96h)                               |                       | ±5%     | ±5%  |
|                         | Read_Temperature(8Dh)<br>ambient temperature |                       | ±5℃     | ±5℃  |

#### Table18. Required Accuracy(110V/60Hz,220V/50Hz Vac or 240Vdc)

## **13.2 PMBus Specification**

Linear Data Formats

The Linear Data Format is a two byte value with: An 11 bit, two's complement mantissa and A 5 bit, two's complement exponent (scaling factor). The format of the two data bytes is illustrated in below Figure.



The relation between Y, N and the "real world" value is:  $X = Y \cdot 2^{N}$ 

Where, as described above:

X is the "real world" value being communicated

Y is an 11 bit, two's complement integer;

N is a 5 bit, two's complement integer.

Devices that use the linear format must accept and be able to process any value of N.

## **13.3 PMBUS Command Supported**

## Table19. STATUS\_WORD Command

| Byte | Bit<br>No. | Status Bit Name      | Meaning                                                                                                                                    | Support |
|------|------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------|
|      | 7          | BUSY                 | A fault was declared because the device was busy and<br>unable to respond.                                                                 | No      |
|      | 6          | OFF                  | This bit is asserted if the unit is not providing power to<br>the output, regardless of the reason, including simply not<br>being enabled. | Yes     |
| Low  | 5          | VOUT_OV              | An output over voltage fault has occurred.                                                                                                 | Yes     |
| LOW  | 4          | IOUT_OC              | An output over current fault has occurred.                                                                                                 | Yes     |
|      | 3          | VIN_UV               | An input under voltage fault has occurred.                                                                                                 | Yes     |
|      | 2          | TEMPERATURE          | A temperature fault or warning has occurred.                                                                                               | Yes     |
|      | 1          | CML                  | A communications, memory or logic fault has occurred.                                                                                      | No      |
|      | 0          | NONE OF THE<br>ABOVE | A fault or warning not listed in bits [7:1] of this byte has occurred.                                                                     | No      |
|      | 7          | VOUT                 | An output voltage fault or warning has occurred.                                                                                           | Yes     |
|      | 6          | IOUT/POUT            | An output current or output power fault or warning has occurred.                                                                           | Yes     |
|      | 5          | INPUT                | An input voltage, input current, or input power fault or warning has occurred.                                                             | Yes     |
| High | 4          | MFR                  | A manufacturer specific fault or warning has occurred.                                                                                     | No      |
|      | 3          | POWER_GOOD#          | The POWER_GOOD signal, if present, is negated.                                                                                             | Yes     |
|      | 2          | FANS                 | A fan or airflow fault or warning has occurred.                                                                                            | Yes     |
|      | 1          | OTHER                | A bit in STATUS_OTHER is set.                                                                                                              | Yes     |
|      | 0          | UNKNOWN              | A fault type not given in bits [15:1] of the STATUS_WORD has been detected.                                                                | No      |

## Table20. STATUS\_VOUT Command

| Bit | Meaning                                                                                                                    | Support |
|-----|----------------------------------------------------------------------------------------------------------------------------|---------|
| 7   | VOUT Over voltage Fault                                                                                                    | Yes     |
| 6   | VOUT Over voltage Warning                                                                                                  | No      |
| 5   | VOUT Under voltage Warning                                                                                                 | No      |
| 4   | VOUT Under voltage Fault                                                                                                   | Yes     |
| 3   | VOUT_MAX Warning (An attempt has been made to set the output voltage to value higher than allowed by the VOUT_MAX command) | No      |
| 2   | TON_MAX_FAULT                                                                                                              | No      |
| 1   | TOFF_MAX Warning                                                                                                           | No      |
| 0   | VOUT Tracking Error                                                                                                        | No      |

## Table21. STATUS\_IOUT Command

| Bit | Meaning                                          | Support |
|-----|--------------------------------------------------|---------|
| 7   | IOUT Over current Fault                          | Yes     |
| 6   | IOUT Over current And Low Voltage Shutdown Fault | No      |
| 5   | IOUT Over current Warning                        | Yes     |
| 4   | IOUT Undercurrent Fault                          | No      |
| 3   | Current Share Fault                              | No      |
| 2   | Power Limiting                                   | No      |
| 1   | POUT Overpower Fault                             | Yes     |
| 0   | POUT Overpower Warning                           | Yes     |

## Table22. STATUS\_INPUT Command

| Bit | Meaning                                 | Support |  |  |
|-----|-----------------------------------------|---------|--|--|
| 7   | VIN Over voltage Fault                  | Yes     |  |  |
| 6   | VIN Over voltage Warning                | Yes     |  |  |
| 5   | VIN Under voltage Warning               | Yes     |  |  |
| 4   | VIN Under voltage Fault                 | Yes     |  |  |
| 3   | Unit Off For Insufficient Input Voltage |         |  |  |
| 2   | IIN Over current Fault                  | No      |  |  |
| 1   | IIN Over current Warning No             |         |  |  |
| 0   | PIN Overpower Warning                   | No      |  |  |

## Table23. STATUS\_TEMPERATURE Command

| Bit | Meaning                    | Support |  |  |
|-----|----------------------------|---------|--|--|
| 7   | Over temperature Fault     | Yes     |  |  |
| 6   | Over temperature Warning   | Yes     |  |  |
| 5   | Under temperature Warnings | No      |  |  |
| 4   | Under temperature Fault    | No      |  |  |
| 3   | Reserved                   | No      |  |  |
| 2   | Reserved                   |         |  |  |
| 1   | Reserved                   |         |  |  |
| 0   | Reserved                   |         |  |  |

## Table24. STATUS\_FAN\_1\_2 Command

| Bit | Meaning                | Support |
|-----|------------------------|---------|
| 7   | Fan 1 Fault            | Yes     |
| 6   | Fan 2 Fault            | No      |
| 5   | Fan 1 Warning          | Yes     |
| 4   | Fan 2 Warning          |         |
| 3   | Fan 1 Speed Overridden | No      |
| 2   | Fan 2 Speed Overridden | No      |
| 1   | Airflow Fault          | No      |
| 0   | Airflow Warning        | No      |

| CMD Code | Name                | Туре                       | Bytes    | Conditions |
|----------|---------------------|----------------------------|----------|------------|
| 03h      | CLEAR_FAULTS        | Send Byte                  | 0        |            |
| 05h      | PAGE_PLUS_WRITE     | Block Write                | Variable |            |
| 06h      | PAGE_PLUS_READ      | Block Write-<br>Block Read | Variable |            |
| 19h      | CAPABILITY          | Read Byte                  | 1        |            |
| 1Ah      | QUERY               | Block Read                 | 1        |            |
| 1Bh      | SMBALERT_MASK       | Block Write-<br>Block Read | 2        |            |
| 20h      | VOUT_MODE           | Read Byte                  | 1        |            |
| 40h      | VOUT_OV_FAULT_LIMIT | Read Word                  | 2        |            |
| 44h      | VOUT_UV_FAULT_LIMIT | Read Word                  | 2        |            |
| 46h      | IOUT_OC_FAULT_LIMIT | Read Word                  | 2        |            |
| 4Ah      | IOUT_OC_WARN_LIMIT  | Read Word                  | 2        |            |
| 4Fh      | OT_FAULT_LIMIT      | Read Word                  | 2        |            |
| 51h      | OT_WARN_LIMIT       | Read Word                  | 2        |            |
| 55h      | VIN_OV_FAULT_LIMIT  | Read Word                  | 2        |            |
| 57h      | VIN_OV_WARN_LIMIT   | Read Word                  | 2        |            |
| 58h      | VIN_UV_WARN_LIMIT   | Read Word                  | 2        |            |
| 59h      | VIN_UV_FAULT_LIMIT  | Read Word                  | 2        |            |
| 78h      | STATUS_BYTE         | Read Byte                  | 1        |            |
| 79h      | STATUS_WORD         | Read Word                  | 2        |            |
| 7Ah      | STATUS_VOUT         | Read Byte                  | 1        |            |
| 7Bh      | STATUS_IOUT         | Read Byte                  | 1        |            |
| 7Ch      | STATUS_INPUT        | Read Byte                  | 1        |            |

## Table25. Supported Command Summary

| 7Dh | STATUS_TEMPERATURE | Read Byte  | 1  |                                   |
|-----|--------------------|------------|----|-----------------------------------|
| 80h | READ_VIN_TYPE      | Read Byte  | 1  | 00:NO AC;<br>01:AC; 02:HVDC       |
| 81h | STATUS_FANS_1_2    | Read Byte  | 1  |                                   |
| 86h | READ_EIN           | Block Read | 6  |                                   |
| 87h | READ_EOUT          | Block Read | 6  |                                   |
| 88h | READ_VIN           | Read Word  | 2  |                                   |
| 8Bh | READ_VOUT          | Read Word  | 2  |                                   |
| 8Ch | READ_IOUT          | Read Word  | 2  |                                   |
| 8Dh | READ_TEMPERATURE_1 | Read Word  | 2  | Ambient temperature               |
| 8Eh | READ_TEMPERATURE_2 | Read Word  | 2  | Primary Heatsink<br>temperature   |
| 8Fh | READ_TEMPERATURE_3 | Read Word  | 2  | Secondary Heatsink<br>temperature |
| 90h | READ_FAN_SPEED_1   | Read Word  | 2  | Rpm value                         |
| 96h | READ_POUT          | Read Word  | 2  |                                   |
| 97h | READ_PIN           | Read Word  | 2  |                                   |
| 98h | PMBUS_REVISION     | Read Byte  | 1  | V1.2                              |
| 99h | MFR_ID             | Read Block | 7  | See MFR Data table                |
| 9Ah | MFR_MODEL          | Read Block | 10 | See MFR Data table                |
| A0h | MFR_VIN_MIN        | Read Word  | 2  | See MFR Data table                |
| Alh | MFR_VIN_MAX        | Read Word  | 2  | See MFR Data table                |
| A4h | MFR_VOUT_MIN       | Read Word  | 2  | See MFR Data table                |
| A5h | MFR_VOUT_MAX       | Read Word  | 2  | See MFR Data table                |
| A6h | MFR_IOUT_MAX       | Read Word  | 2  | See MFR Data table                |
| A7h | MFR_POUT_MAX       | Read Word  | 2  | See MFR Data table                |

| A8h | MFR_TAMBIENT_MAX | Read Word               | 2 |                                                                                           |
|-----|------------------|-------------------------|---|-------------------------------------------------------------------------------------------|
| A9h | MFR_TAMBIENT_MIN | Read Word               | 2 |                                                                                           |
| D0h | SMART_ON_CONFIG  | Write Byte<br>Read Byte | 1 | 00h Standard Redundancy01hSmart On Active02hSmart Standby03hSmart Standby04hSmart Standby |

#### Table26. MFR Data Table

| CMD Code | Name         | Conditions |
|----------|--------------|------------|
| 99h      | MFR_ID       |            |
| 9Ah      | MFR_MODEL    |            |
| A0h      | MFR_VIN_MIN  | 90         |
| Alh      | MFR_VIN_MAX  | 264        |
| A4h      | MFR_VOUT_MIN | 11.4       |
| A5h      | MFR_VOUT_MAX | 12.6       |
| A6h      | MFR_IOUT_MAX | 29         |
| A7h      | MFR_POUT_MAX | 350        |